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I. INTRODUCTION

Properties of strongly correlated quantum matter are usu-
ally well described by the many-body ground state and by
the first elementary excitation. Multiparticle excitations are
often not important because they just constitute an incoher-
ent background. Thus, the study of quantum phase transitions
mainly relies on low-energy spectrum analysis, namely, en-
ergy levels of the ground state and the first excited state.1

However, in various systems, bound states may arise and
play a major role. One of the most famous example are Coo-
per pairs which lead to superconductivity but other electron
systems also display such mechanism �see, for instance,
Refs. 2–4�. In one-dimensional magnetic systems, well-
known examples are the dimerized and frustrated spin chain
as well as the two-leg spin ladder5–10 which contains bound
states made up of triplons. Interestingly, such modes have
been experimentally observed in cuprate ladder materials.11

In two dimensions, the frustrated Shastry-Sutherland model
and its experimental realization SrCu2�BO3�2 are also known
to possess two-triplon bound states.12,13 Note that more com-
plicated bound states may arise in topologically ordered sys-
tems where anyons �semions� can bind to form bosons or
fermions as discussed in Ref. 14.

Recently, such binding effects have been studied in the
two-dimensional XXZ model15 where elementary excitations
are dressed magnons. The aim of the present paper is to
analyze the spectrum of such magnon bound states in two
different spin systems. The first one is the ferromagnetic
transverse-field Ising model �TFIM� on the square lattice for
which we derive the two-magnon spectrum perturbatively in
the small-field limit. The high-order series expansion �order
12� of the corresponding gap allows us to extrapolate its
behavior near the critical point where it is found to vanish.
We also compute the ratio between the one-magnon gap and
this two-magnon gap at the critical point which is approxi-
mately 1.8, in agreement with field-theoretical
predictions.16,17 The second system considered in this study
is the XXZ model on the square lattice which, in the isotro-

pic limit �XXX�, is the celebrated antiferromagnetic Heisen-
berg model. As for the TFIM, we focus on the two-magnon
bound-states spectrum which is derived up to order 8 near
the Ising limit. However, as we shall see, results obtained
here differ from those obtained recently by Hamer15 since,
contrary to his claim, we show using very simple arguments,
that there are two distinct branches of two-magnon bound
states at low energy. Also, let us underline that the fate of the
lowest-energy bound state when approaching the Heisenberg
limit cannot be conclusively determined at this order.

From a methodological point of view, several methods to
compute high-order series expansion in quantum many-body
systems are available �see Refs. 18 and 19 for a review�.
Here, we use the perturbative continuous unitary transforma-
tions �PCUTs� method20–23 which is especially well suited to
investigate the many-particle spectrum and provides a natu-
ral quasiparticle �QP� description.

The structure of this paper is the following. In Sec. II C,
we introduce the two models �TFIM in Sec. II A and XXZ
model in Sec. II B� under consideration. We show that the
Ising limit is a good starting point for a perturbation theory
in the PCUTs framework and we also give a very simple
picture to understand the occurrence of bound states in this
limiting case. In Sec. II C, we introduce another description
of the spin model in terms of bond degrees of freedom which
will be useful to set up the present perturbation theory frame-
work. The end of this Sec. II D is dedicated to symmetry
considerations. In Sec. III, we recall several important as-
pects of PCUTs which are essential to understand the next
section. In Sec. IV, we adapt the finite-lattice method �com-
monly used in statistical mechanics19,24� to quantum prob-
lems, allowing one to significantly increase the maximum
order of the series expansions. Let us stress that readers in-
terested only in results can skip these two sections and
switch directly to Secs. V and VI where we discuss the low-
energy spectra of the TFIM and XXZ model, respectively.
Finally, in Sec. VII, we discuss the spectrum of a new model
which naturally emerges when describing the TFIM in terms
of bonds. This model may be seen as a special case of the
toric code model25 in a magnetic field14,26 in which flux cre-
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ation energy cost vanishes. All coefficients used to compute
gaps in both models are gathered in Appendices A and B.

II. MODELS AND MAPPINGS

A. Transverse-field Ising model

Let us first introduce the TFIM on the square lattice
whose Hamiltonian reads

HTFIM = − J�
�i,j�

�i
z� j

z − h�
i

�i
x, �1�

where the second sum runs over all i of the square lattice and
the first sum runs over all bonds �i , j� between nearest-
neighbor sites �see Fig. 1�. The Pauli matrices are denoted by
�x, �y, and �z. Here, we focus on a ferromagnetic Ising
coupling J�0 and, without loss of generality, we consider
h�0.

This model whose classical counterpart is the three-
dimensional Ising model is known to display a second-order
phase transition separating a symmetric �disordered� phase at
large field h from a broken �ordered� phase at large coupling
J. For an infinite field, all spins point in the +x direction,
while for an infinite exchange coupling, all spins point either
in the +z direction or in the −z direction.

The ground-state energy as well as the single-excitation
spectrum have been computed in both phases using series
expansion19,27,28 allowing for a precise determination of the
critical point at J /h �c=0.3285�1�. In the broken phase, the
perturbative expansion is done around the Ising limit �h=0�.
Thus, it is convenient to introduce the following Hamiltonian
that will also be the starting point of our study of the Heisen-
berg model �see Sec. II B�

HI = −
1

2 �
�i,j�

�i
z� j

z. �2�

Let us consider its ferromagnetic ground state where all
spins point in the +z direction. Lowest-energy excitations

then consist in static magnons �spin flips� whose energy cost
is 4. The prefactor 1/2 in Eq. �2� defining HI indeed ensures
that any state will have an energy equal to that of the ground
state plus the number of antiferromagnetic bonds. Two such
“isolated” magnons are shown in Fig. 2.

A two-magnon state will have an energy cost of 8, except
if the two magnons are nearest neighbors. Indeed, in such a
case, only six bonds have an antiferromagnetic configuration,
which results in an energy reduction of 8−6=2 compared to
the situation where magnons are far apart. This proves the
existence of bound states in the spectrum, two of which are
shown in Fig. 3.

Of course, following the same line of reasoning, one can
show that n-magnon bound states exist for any n�2, but we
shall restrict our study to the case n=2. Let us also notice
that in the ordered phase, the perturbation is performed
around the field term of Eq. �1�, which basically counts spin
flips, so that no binding effect is present in this limit.

n1

x

i

y

j

n2

β

β = 〈i, j〉

FIG. 1. �Color online� Square lattice on which the models stud-
ied in this paper are defined. Translation vectors in the x and y
directions are denoted n1 and n2. The bond between sites i and j is
denoted �i , j� or by a Greek letter such as � to shorten the notation.

FIG. 2. �Color online� Two magnons �spins pointing left� on top
of a ferromagnetic background. Such a state involves eight antifer-
romagnetic �bold� bonds �four for each magnon�, and costs an en-
ergy 8, with respect to Hamiltonian HI.

FIG. 3. �Color online� Two examples of two-magnon bound
states. Each of them has an energy cost of 6 with respect to Hamil-
tonian HI. As in Fig. 2, antiferromagnetic bonds are represented as
bold segments.
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B. Heisenberg and XXZ models

Let us now discuss, in the same spirit, the antiferromag-
netic Heisenberg model on the square lattice. Its Hamiltonian
reads

HH = J�
�i,j�

Si · S j , �3�

where Si=�i /2 is the spin operator at site i. In the following,
we set J=2 and we introduce an anisotropy parameter � with
the aim of performing series expansion in this parameter, as
was done in Refs. 19 and 29–31. The Heisenberg Hamil-
tonian is then the �=1 limit of the following XXZ Hamil-
tonian

HXXZ =
1

2 �
�i,j�

�i
z� j

z +
�

2 �
�i,j�

��i
x� j

x + �i
y� j

y� , �4�

=
1

2 �
�i,j�

�i
z� j

z + ��
�i,j�

��i
+� j

− + �i
−� j

+� , �5�

where we have introduced the usual raising and lowering
operators �i

�= 1
2 ��i

x� i�i
y�. The square lattice being bipartite,

it is possible to perform a rotation of angle � around the x
axis on one of the sublattices, namely, ��x ,�y ,�z�
→ ��x ,−�y ,−�z�. This transformation leads, without chang-
ing notations for the Pauli operators and making use of HI
defined previously, to

HXXZ = HI + ��
�i,j�

��i
+� j

+ + �i
−� j

−� . �6�

We thus see that in the limit of a vanishing anisotropy
parameter �, HXXZ reduces to HI so that the binding effects
discussed above for HTFIM are also at work here. The differ-
ence between both models is the perturbation term added to
HI.

Let us finally mention that from the point of view of the
XXZ model, a second-order quantum phase transition occurs
at the Heisenberg point �=1, separating a gapped phase for
0	�	1 with a twofold-degenerate ground state with Néel
order from a gapless phase with O�2� symmetry for ��1.

C. Bond description

As we have already seen in Sec. II A when describing the
spectrum of HI, the energy cost of any multimagnon state is
given by the number of antiferromagnetic bonds of the
state’s spin configuration. It is thus natural, though not man-
datory, to introduce effective spin variables living on the
bonds �see Fig. 4� as follows:

�̃�
z = �̃�i,j�

z = �i
z� j

z. �7�

To make notations light, we denote bonds �i , j� between two
sites i and j with Greek letters, such as � in the above equa-
tion. A value +1 or −1 of �̃�

z is then associated to, respec-
tively, a ferromagnetic or antiferromagnetic configuration of
bond �. Within such a description, Hamiltonian �2� becomes
a pure field term

H̃I = −
1

2�
�

�̃�
z . �8�

We can now give another form of the field term of HTFIM.
Since �i

x flips the spin at site i, it flips the four bonds sharing
site i. Let us denote by s�i� the set of these four bonds �the
notation s referring to stars or vertices of the original lattice�.
Furthermore, we introduce

Ãs = �
��s�i�

�̃�
x , �9�

which is the product of the four operators flipping bonds

connected to site i. One can alternatively say that the Ãs are
defined on the white plaquettes of Fig. 4. Then, the TFIM
Hamiltonian reads

H̃TFIM = −
1

2�
�

�̃�
z − h�

s

Ãs. �10�

In the same vein, we can rewrite the XX part of the XXZ
Hamiltonian �4�. From expression �6�, it is clear that this XX
term flips two adjacent spins, if these two spins are in a
ferromagnetic configuration while it annihilates antiferro-
magnetic bonds. We recall that in Eq. �6�, the sublattice ro-
tation was already used, so that a ferromagnetic configura-
tion corresponds to an original antiferromagnetic
configuration in Eqs. �4� and �5�. As a consequence, the XX
term flips the six bonds around a ferromagnetic bond, and
one can write

n2

n1

y

x

s t
α

α = 〈s, t〉

C1

C2

FIG. 4. �Color online� Dots are located in the middle of the
bonds of the original square lattice of Fig. 1 �represented with
dashed lines�. Bond operators of Eq. �7� are defined on these bonds.
White plaquettes �centered on vertices of the original lattice� are

used to define Ãs operators 	see Eq. �9�
, whereas B̃p operators of
Eq. �12� are defined on gray plaquettes. The bond that is shared by
two white plaquettes such as s and t is denoted by �s , t� or by a
Greek letter such as 
. Contours C1 and C2 are used in Eq. �14� to
define Z2 conserved quantities for a system with periodic boundary
conditions.
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H̃XXZ = −
1

2�
�

�̃�
z + ��

�s,t�
ÃsÃt

1 + �̃

z

2
, �11�

where the second sum runs over nearest-neighbor white
plaquettes s and t that share a common bond 
= �s , t� �see
Fig. 4�, and involves projectors that annihilate an antiferro-
magnetic configuration of such bonds.

D. Symmetries, counting, and relation to toric code

Up to now, we have not yet discussed one fundamental
aspect of the bond description, namely, the counting of
states. Indeed, if we assume that the original lattice contains
N spins half �, the mapping brings us to a description with
2N spins half �̃ since the number of bonds is twice the
number of sites �assuming periodic boundary conditions�.
Thus, it seems that Hilbert spaces of the H̃ Hamiltonians �8�,
�10�, and �11� are too large, and involve “unphysical” states.

However, looking at these Hamiltonians a bit closer, it is
clear that the following operators are conserved

B̃p = �
��p

�̃�
z . �12�

In this definition, the product is performed over all bonds
belonging to p, which can be any of the gray plaquettes
shown in Fig. 4 �they are also plaquettes in the original lat-
tice shown in Fig. 1�. Among the N Z2 operators that can be
defined this way, only N−1 can be set independently to �1,

because of the constraint �pB̃p= I �with periodic boundary
conditions�.

With such notations, Hamiltonian �10� is nothing but the
toric code Hamiltonian25 in a magnetic field �we keep using
the � notations�

H̃TC = − Js�
s

Ãs − Jp�
p

B̃p − hz�
�

�̃�
z , �13�

with Js=h, Jp=0, and hz=J=1 /2. Although the original toric
code �with nonvanishing Js and Jp� in a field has already
been the subject of some works �see Refs. 26 and 32–34�, we
are not aware of any study of this precise model which has
also been recently obtained in a related framework.35 For this
reason, we will discuss some of its properties in Sec. VII.

For periodic boundary conditions, as in the “bare” toric

code25 �see also Ref. 36 for a pedagogical description�, Bp
˜’s

are not the only conserved operators when a magnetic field
in the z direction is present. Using contours C1 and C2 de-
picted in Fig. 4, one can indeed define the following opera-
tors

C̃1 = �
��C1

�̃�
z and C̃2 = �

��C2

�̃�
z . �14�

These are also Z2 conserved quantities, which can be set to

�1 independently of the values of the B̃p’s.
All in all, we have �N−1�+2=N+1 conserved and inde-

pendent Z2 quantities. Furthermore, to recover the “physical”
subspace and the physics of the TFIM or the Heisenberg
model, one should set all of them to +1. This reduces the

Hilbert space dimension from 22N to 22N−�N+1�=2N−1, that is
in fact less than the original Hilbert space dimension. How-
ever, the reason for this is obvious: our description in terms
of bond variables is done with respect to one of the two
degenerate ferromagnetic ground states. As a consequence,
such a description can only be valid in the broken phase.

III. PERTURBATIVE CONTINUOUS UNITARY
TRANSFORMATIONS

The aim of this section is to equip the reader with the
basic knowledge about PCUTs necessary for the understand-
ing of the next section. For concreteness, we work out an
example in detail, rather than focusing on a general frame-
work.

A. Basic ideas of continuous unitary transformations

The CUTs method as known in the condensed-matter
theory community originates from the work of Wegner.20,37,38

A pedagogical introduction to this technique can be found in
Refs. 39 and 40. The aim of this technique is to diagonalize
or, more modestly, to block diagonalize a given Hamiltonian
H thanks to a unitary transformation. The latter is not per-
formed in a single step but rather in a continuous way
�whence the name of the method� as

H�l� = U†�l�HU�l� , �15�

where l is a running parameter such that H=H�l=0� and
Heff=H�l=�� is an effective �block-� diagonal Hamiltonian.
This equation can be cast into a differential �flow� commu-
tator equation20

�lH�l� = 	��l�,H�l�
 , �16�

where ��l�=�lU
†�l�U�l� is the anti-Hermitian generator asso-

ciated to the unitary transformation U�l�.

B. Quasiparticle conserving generator

The next task is to find the appropriate generator which,
from the local knowledge of H�l�, leads to the desired form
of the effective Hamiltonian. We shall only discuss the QP
conserving generator22 that will be used in the sequel. We
furthermore focus on a specific example for which the
Hamiltonian can be written

H = Q + �
n=−nmax

+nmax

Tn. �17�

For concreteness, in the following we consider the case
where n� �0, �2, �4
 which is relevant for the TFIM. In
this equation, Q is the Hermitian operator which counts the
number of QPs �so its spectrum is contained in N�, and the
Tn’s are operators that change the QP number by the amount
n, so that 	Q ,Tn
=nTn. The hermiticity of the Hamiltonian
requires that Tn

†=T−n. The QP conserving generator is de-
signed to bring the Hamiltonian to an effective form that
conserves the number of QPs: 	Q ,Heff
=0. Said differently,
under the CUTs, all terms Tn will be flowing �but not Q
which is isolated from all other terms�, thus becoming Tn�l�,
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and one wishes to reach a situation where Tn�l=��=0 for all
n�0. This can be achieved22,39,40 by choosing

��l� = T+2�l� − T−2�l� + T+4�l� − T−4�l� . �18�

With this choice of generator, the flow Eq. �16� can be writ-
ten as

�lT0�l� = 2	T+2�l�,T−2�l�
 + 2	T+4�l�,T−4�l�
 ,

�lT+2�l� = − 2T+2�l� + 	T+2�l�,T0�l�
 + 2	T+4�l�,T−2�l�
 ,

�lT+4�l� = − 4T+4�l� + 	T+4�l�,T0�l�
 . �19�

We have not written the flow equations for T−2�l� and T−4�l�
since the Hamiltonian remains Hermitian under a unitary
transformation. Let us emphasize that no new term appears
during the flow, thanks to the choice of the generator �e.g.,
no term creating six particles appears since 	T+2�l� ,T+4�l�

+ 	T+4�l� ,T+2�l�
=0�. Linear terms in the right-hand side of
Eq. �19� ensure that Tn�0�l=��=0 so that 	Heff ,Q
=0.

C. Perturbative commutator expansion of the flow equation

It remains to solve these flow equations which is still a
challenging task since the Tn�l� terms contain an infinite
number of operators. The easiest way of doing so is to per-
form a perturbative expansion of the flow equations, assum-
ing that all Tn terms in H 	see Eq. �17�
 are small, and of the
same order of magnitude. Such an expansion was first per-
formed by Stein21 for a Hamiltonian without T�4 terms, and
extended to Hamiltonians with terms changing Q by any
amount by Knetter and Uhrig22 who also provided a descrip-
tion in terms of QP. However the formalism used in these
papers was not the same as the one presented here, and, in
particular, the emphasis was not on getting a commutator
expansion, which is our goal in the following.

To this end, the expansion for Tn�l� is simply written

Tn�l� = �
i=1

�

Tn
�i��l� , �20�

where the superscript �i� is the order, in perturbation, of
Tn

�i��l�. The flow equations can then be expanded as

�lT0
�i��l� = �

j=1

i−1

�2	T+2
�j��l�,T−2

�i−j��l�
 + 2	T+4
�j��l�,T−4

�i−j��l�
� ,

�lT+2
�i��l� = − 2T+2

�i��l� + �
j=1

i−1

�	T+2
�j��l�,T0

�i−j��l�


+ 2	T+4
�j��l�,T−2

�i−j��l�
� ,

�lT+4
�i��l� = − 4T+4

�i��l� + �
j=1

i−1

	T+4
�j��l�,T0

�i−j��l�
 . �21�

These have to be solved with the initial conditions Tn
�i�

�l=0�=
i,1Tn and then one can take the limit l→� to obtain
Heff. For the Hamiltonian considered up to now, one obtains,

at order 3, the following commutator expansion

Heff = Q + T0 +
1

2
	T+2,T−2
 +

1

4
	T+4,T−4
 +

1

8
�†	T+2,T0
,T−2‡

+ †T+2,	T0,T−2
‡� +
1

8
�†	T+4,T−2
,T−2‡

+ †T+2,	T+2,T−4
‡� +
1

32
�†	T+4,T0
,T−4‡

+ †T+4,	T0,T−4
‡� . �22�

We have computed such expansions for Hamiltonians of
the form given in Eq. �17� to various orders given in Table I.
In this table, we also give the total number of nonzero coef-
ficients one obtains once the commutators in the effective
Hamiltonian have been expanded in polynomials in T opera-
tors. Let us note that for the Hamiltonian we have been con-
sidering up to now, with n� �−4,−2,0 ,2 ,4
, the expansion
can be obtained from the one of nmax=2 �i.e., n� �−2,
−1,0 ,1 ,2
� by a proper rescaling of the corresponding
coefficients.

Let us also mention that all coefficients are given by ra-
tional numbers and are valid for arbitrary system size, in-
cluding the thermodynamical limit. The very last �but not
least� step in the whole computation is to apply this effective
Hamiltonian to states with fixed number of QPs and to diag-
onalize it.

To determine the low-energy QP properties of the TFIM
and the XXZ Hamiltonian around the Ising limit, we shall
use this PCUTs approach. Indeed, in this limit, both systems
can be written in the form �17� by defining the operator

Q = �
�

1 − �̃�
z

2
= N + H̃I , �23�

which counts the number of antiferromagnetic bonds. The
operators Tn are then proportional to the perturbation �h in
the TFIM and � in the XXZ model�. The index n denotes the
change in the number of antiferromagnetic bonds q. For the
TFIM one has n� �0, �2, �4
 and for the XXZ model one
gets n� �0, �2, �4, �6
. The larger number of Tn opera-
tors for the XXZ model results in a larger effort since more
processes have to be taken into account for a given pertur-
bation order. For instance, for the 2QP sector �containing
bound states�, we reached order 12 for the TFIM and order 8
for the XXZ model.

TABLE I. Maximum order at which we have derived the effec-
tive Hamiltonian, for various values of nmax 	see Eq. �17� for defi-
nitions
, as well as the total number of nonzero coefficients needed
to express the effective Hamiltonian as a polynomial in Tn’s.

nmax Order Number of coefficients

1 18 67214380

2 14 573903322

3 12 924457284

4 10 189956506
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Here, we use the transformed Hamiltonians �10� and �11�
defined with bond variables, Eq. �7�, but PCUTs can be �and
for actual computer implementations are� applied directly to
Eqs. �1� and �6�. In order to avoid possible confusion, we
shall use the notation 0QP, 1QP, and 2QP when referring to
0, 1, and 2 magnons, and 0qp, 1qp,…, 8qp when referring to
0,1,…,8 antiferromagnetic bonds. The ground state of the
effective Hamiltonian is the state without antiferromagnetic
bonds �q=0�. The one-magnon excitations have q=4 and
bound states of two nearest-neighbor magnons have q=6 an-
tiferromagnetic bonds. Things become much more compli-
cated for configurations with more antiferromagnetic bonds,
and we shall not study them here. Let us simply mention that
q=8 corresponds, in the unperturbed limit, either to two un-
bound magnons or to three- or four-magnon bound states.
However, at finite coupling, we cannot exclude that there
also exist two-magnon bound states �different from those dis-
cussed above� in this sector.

IV. LINKED-CLUSTER EXPANSION AND QUANTUM
FINITE-LATTICE METHOD

A. Linked-cluster expansion

Flow Eq. �21� show that Heff can be written as a pertur-
bative commutator expansion to any order, as exemplified in
Eq. �22� to order 3. This property has dramatic consequences
when one considers a Hamiltonian defined on a lattice with
local Tn operators. By local, we mean that Tn=�iTn,i, where
i runs over the lattice sites, with Tn,i acting on a finite number
of sites neighboring i. Indeed, in such a situation, commuta-
tors 	Tn,i ,Tp,j
 vanish as soon as i and j are sufficiently far
apart and are local operators. One could try to implement the
calculation of the commutators in a symbolic way but it is
usually much easier to apply the effective Hamiltonian �with
expanded commutators� to states. For the practical purpose
of evaluating the action of one term in Heff, one then only
needs to apply Heff to a finite-size linked cluster of sites. The
notion of linked is problem dependent since it depends on
the extension of Tn,i operators.

The appearance of a linked-cluster expansion for effective
Hamiltonians written as commutators is a long-established
and well-known result �see, e.g., Ref. 41�, although it seems
to have escaped the attention it deserves in more recent
publications.18,19,23

Let us finally note that the PCUTs method is not the only
available one to obtain such a perturbative commutator ex-
pansion and one could use the Van Vleck formalism �see,
e.g., Ref. 42� as well. The main advantage of PCUTs, is that
it does not generate terms creating any number of QPs, so
that the bookkeeping is not too difficult. One drawback is
that one has to solve flow equations instead of performing
purely algebraic manipulations.

In the following, we will introduce the two commonly
used implementations of the linked-cluster theorem which
represent extreme cases. Either a calculation is performed on
a large number of minimal clusters or a calculation is done
on one very large cluster. Afterwards, a third implementation
of the linked-cluster theorem is presented which is a com-
promise and which we use in the current study.

B. Graph-ology

With Sec. IV A in mind, it should now be clear that the
aim is to compute contributions of the effective Hamiltonian
when the latter is allowed to act on states defined on clusters
of one site, two sites, etc. To make things more concrete, in
what follows, we shall focus on the computation of the
ground-state energy per site e0 of the TFIM at order 6 in h.
As only even powers of h will appear in the expansion, we
shall for simplicity only refer to the order in h2 in this sec-
tion, so that we will say that we work at order n when com-
puting terms up to order �h2�n. Only the action on the ferro-
magnetic �0QP� state will be considered here so that we do
not draw any arrows to make things clearer. The relevant
contributions from different clusters are shown in Fig. 5. Let
us mention that the clusters shown in this figure do have
contributions at order 4 or more �in which case at least one
site is acted upon twice� but clusters not shown �with four
crosses or more� do not have contributions at order 3 or less.
To obtain the last line of Fig. 5, the symmetries of the lattice
have been used. Note that the Tn operators can act on at most
three sites �each pictogram has at most 3 crosses in Fig. 5� at
order 3 and in the 0QP sector, because each Tn operator flips
the spin of the site on which it acts, so one needs two Tn
operators per site to start from and end up with a ferromag-
netic �0QP� state.

To compute the contributions shown in Fig. 5, it is not
very practical to make sure that all sites have been acted
upon at least once by a Tn operator. It is much easier in actual
computations to compute all possible outcomes of the action
of Heff on a given cluster and to subtract contributions of
subclusters, as illustrated in Figs. 6 and 7. Let us note that
these subtractions are mandatory in the perturbation theory
used in Refs. 18 and 19 which is not based on an expression
of Heff as a series in Tn operators. Numerical coefficients
appearing in Fig. 7 are simply the number of ways the sub-
clusters �or their symmetric-related ones� can be embedded
in a given cluster.

Thus, we are naturally led to enumerate all possible linked
clusters �i.e., also graphs, hence the name of this section� that
can be embedded in the square lattice and apply the subtrac-

e0 = + + + +

+ + + + + . . .

= + 2 + 2 + 4 + . . .

FIG. 5. �Color online� Pictorial representation of the ground-
state energy per site as a linked-cluster expansion. A cross on a site
means that this site has been acted upon at least twice by a Tn

operator �two spin flips per site are necessary to preserve the ferro-
magnetic state�. The second line follows from the symmetries of the
lattice. All contributions relevant for a computation at order 3 of e0

are shown, contrarily to contributions of order 4 �which are all
gathered in “¯”�.
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tion technique to each of the cluster. Though this is the least
memory-consuming way to proceed, and though the compu-
tational effort required for the computation on one cluster is
rather small, it requires to perform a heavy and time-
consuming combinatorial work. One indeed has to enumer-
ate all possible linked clusters, and then, for each cluster, one
needs to find all its linked subclusters. In order for this tech-
nique to be as efficient as possible, one should also ensure
that topologically identical clusters are identified �such as the
two three-site clusters of Fig. 7�. This again reduces the com-
putational effort but makes the combinatorial tasks even
harder and more time consuming.

A completely opposite way of performing the calculation
is to reduce the combinatorial complexity to zero by comput-
ing all contributions in one go, thanks to a cluster with peri-
odic boundary conditions, large enough so that it can accom-
modate all clusters one is interested in, without any finite-
size effect. In this way, applying Heff to a 0QP state defined
on such a cluster one recovers the same state, up to a multi-
plicative factor being equal to e0 times the number of sites of
the cluster. However, as the Hilbert-space size quickly grows
with the number of sites, this makes all computations greedy
in memory, but also in time �because the number of interme-
diate states generated when applying Heff can become huge�.

C. Quantum finite-lattice method

We shall now see how one can work halfway between
these two extreme cases. The idea is to generalize Enting’s
finite-lattice method �see Refs. 19, 24, and 43, and references
therein� from the statistical physics setting �where it is used
to compute the free energy� to the realm of quantum physics.
Essentially, the idea is to use rectangular clusters only and to
perform appropriate subtractions. The main advantage of us-
ing rectangular clusters is that computing the number of em-
beddings of rectangular subclusters is trivial. Compared to
graph-ology, one gains enormously from the combinatorial
side, but of course one has to pay a price: the clusters one
uses are larger than those of graph-ology. Enting’s finite-
lattice method is most useful in low dimensions �namely, two
dimensions in statistical mechanics� where the graph sizes do
not grow too fast with the order in perturbation but with
modifications it can also be efficiently applied to higher di-
mensions �see Ref. 44 for an application in three dimen-
sions�.

Let us first discuss this method in the 0QP sector, where it
is almost the same, in the context we are working in, as the
original method of statistical mechanics, because the ground
state is not infinitely degenerate. In the latter case, our
method would provide an effective Hamiltonian in the low-
energy subspace which is a major difference compared to a
single number �the ground-state energy or the free energy in
statistical mechanics�. The first three equations of Fig. 6 re-
main valid since they involve a rectangular cluster but the
last equation is now replaced by the new matrix element of
Fig. 8.

This can again be inverted to yield subcluster subtraction
and is shown in Fig. 9. From this, one understands that a
rectangular cluster yields, after subtraction, the sum of all
contributions of the linked subclusters that cannot be embed-
ded in any rectangular subcluster (of the considered cluster).
If the cluster has width or height 1, the sum actually consists
in a single term. From these considerations, one can deduce
a simple formula. Let us call Dsx,sy

the expectation value of
Heff, computed on a rectangular cluster of size �sx ,sy�, so that
the first three equations of Fig. 6 and the one of Fig. 8 cor-
respond to D1,1, D2,1, D3,1, and D2,2. Let us furthermore de-
fine �recursively�

D̃sx,sy
= Dsx,sy

− �
tx,ty

��sx − tx + 1��sy − ty + 1�D̃tx,ty
, �24�

where �� means that the sum is restricted to the set of strict
subclusters of sizes �tx , ty� of the cluster of size �sx ,sy�,

=
〈 ∣∣∣ Heff

∣∣∣ 〉
=

=
〈 ∣∣∣ Heff

∣∣∣ 〉
= + +

= + 2

=
〈 ∣∣∣ Heff

∣∣∣ 〉
= + +

+ + +

= + 2 + 3

=

〈 ∣∣∣∣∣ Heff

∣∣∣∣∣
〉

= + +

+ + +

= + 2 + 3

FIG. 6. �Color online� Pictorial representation of the computa-
tion of matrix elements of Heff for various clusters. Crosses have the
same meaning as in Fig. 5. Use of symmetry is made to simplify
equations and to compute only four graphs �see Fig. 5� but others
can be computed as easily.

=

= − 2

= − 2 − 3

= − − − 3

= − 2 − 3

FIG. 7. �Color online� Pictorial representation of the inversion
of the relations of Fig. 6, which leads to subcluster subtraction. The
last equality is due to symmetries.
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namely, satisfying 1� tx�sx and 1� ty �sy with �tx , ty�
� �sx ,sy�. As an illustration, the first three lines of Figs. 7 and

9 give D̃1,1, D̃2,1, D̃3,1, and D̃2,2. Then the ground-state en-

ergy can be expressed as a sum of D̃sx,sy
contributions, for a

range of sx and sy that is problem dependent �because the Tn
operators can have different spatial extensions, as is the case
for the TFIM and the Heisenberg model�. In the case of the
TFIM we have been focusing on up to now, one has

e0 = e0
�0� + �

n

e0
�n�, �25�

with

e0
�n�1� = �

1�sx+sy−1�n

D̃sx,sy
, �26�

and e0
�0� is the constant shift of order 0 in the Hamiltonian.

Contrary to the TFIM where Tn operators act on one site, the
Tn’s for the Heisenberg model act on two sites so that the
sum for e0

�n� would be restricted to 1�sx+sy −1�2n, where
n is the order in �2.

The very same idea can be applied for any QP sector,
provided appropriate subtractions of contributions from sec-
tors with lower number of QPs are performed, as in standard
linked-cluster expansions.18,19,23 In the same spirit as before,
let us give a pictorial explanation based on the TFIM, at
order 2, and for the 1QP sector �the 2QP sector can be
worked out in a similar way�. The aim is to compute hopping
amplitudes, as those given in Appendix A 1. As can be seen
in Fig. 10, one difference compared to the 0QP sector is that
depending on which term of the Hamiltonian one computes,
the particle can hop to different final positions. In the figure,
we have again not represented any arrow to make things
light, but it should be clear that the reference state is a fer-
romagnetic state, with one spin flip at the QP’s position. We
have only considered hoppings ti,j of i sites in x direction and
j sites in y direction, for which i� j�0, other processes can
be found thanks to symmetries of the square lattice and the
hermiticity of the Hamiltonian. The hopping amplitude t0,0,
which should rather be called a chemical potential, is a bit
peculiar. First, the counting operator Q appearing in Heff
gives a contribution of 4. Second, as one is only interested in
the excitation energy above the ground state, the 0QP contri-
butions of the clusters have to be subtracted.

Various contributions of Fig. 10 can be extracted from the
effective Hamiltonian’s matrix elements which are shown in
Figs. 11 and 12. Again, one can invert these relations, which
leads to a recursive subcluster subtraction scheme �see Figs.
13 and 14�. It is not as easy as in the 0QP sector to write

=

〈 ∣∣∣∣∣ Heff

∣∣∣∣∣
〉

= + + +

+ + + +

+ + + +

+

( )(4)

= 4 + 4 + 4 +

( )(4)

FIG. 8. �Color online� Fourth �and last� matrix element from the
2�2 rectangular cluster to be considered for a finite-lattice compu-
tation at order 3 �apart from the first three of Fig. 6�. The term in
parentheses involves the action on four sites and only appears at
order 4 and beyond �whence the exponent of the parenthesis�.

+ + + +

( )(4)

= − 2 − 2 − 4

or 4 +

( )(4)

= − 4 − 4

FIG. 9. �Color online� Inversion of the equality of Fig. 8, with
the help of the first three lines of Fig. 7, showing how subcluster
subtraction appears. The second equality makes use of symmetries,
contrarily to the first line.

t0,0 = 4 +
(

−
)

+
(

−
)

+
(

−
)

+

(
−

)
+

(
−

)

= 4 +
(

−
)

+ 4
(

−
)

t1,0 = + +

+ + + +

= + 2 + 4

t1,1 = + = 2

t2,0 =

FIG. 10. �Color online� Contributions to hopping amplitude at
order 2 as a linked-cluster expansion. Crosses have the same mean-
ing as in Fig. 5 and are acted upon at least twice by Tn operators.
The empty �full� circle represents the initial �final� position of the
particle. Sites with circles are acted upon at least once by Tn opera-
tors. When the “particle” does not move, i.e., for t0,0, the particle’s
site �only represented with a full circle� is acted upon at least twice
by Tn operators. In this case, as one is only interested in the energy
of a 1QP state with respect to the 0QP ground state, one must
subtract the 0QP amplitude �Refs. 18, 19, and 23�. Note that for t0,0,
one should also not forget the action of the counting operator Q,
which gives a zeroth-order contribution equal to 4.
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down a concise formula similar to Eqs. �24� and �26�, be-
cause the particle position has to be taken in consideration,
and implies some more restrictions. However things should
be clear from Figs. 11 and 12. In practice, it is much easier to
use a computer program that determines all relevant subclus-
ters and subtracts their contributions.

As a final word, let us mention that the 2QP sector can be
treated in the same way since the bound states in the TFIM
or the Heisenberg model, that are of interest to us, behave as
a single particle �they are made of two nearest-neighbor
magnons�. If one was interested in the 2QP sector where the
two magnons can move freely, one would not only need to
perform the 0QP subtraction as previously, but one would
also have to subtract the two 1QP contributions, in order to
extract the 2QP interactions. We shall now apply this formal-
ism to both systems introduced in Sec. II.

V. RESULTS FOR TFIM

A. Series expansion of the low-energy spectrum

As we have seen, PCUTs provide, order by order, an ef-

fective Hamiltonian H̃eff
TFIM which is unitarily equivalent to

H̃TFIM and commutes with the operator Q counting the num-
ber of antiferromagnetic bonds. One must then analyze

H̃eff
TFIM in each sector with a given number q of antiferromag-

netic bonds. In the present work, we derived this effective
Hamiltonian in the sector q=0 �0qp or 0QP� up to order 14

=
〈 ∣∣∣ Heff − Q

∣∣∣ 〉
− = −

0,0
=

〈 ∣∣∣ Heff − Q
∣∣∣ 〉

−

= + + −
(

+ 2
)

=
(

−
)

+
(

−
)

0,0
=

〈 ∣∣∣ Heff − Q
∣∣∣ 〉

−
= + +

+ + +
( )(3)

−
(( )(3)

+ 2 + 3

)

=
(

−
)

+
(

−
)

+
(

−
)(3)

0,0

=

〈 ∣∣∣∣∣ Heff − Q

∣∣∣∣∣
〉

−

= + + +

+ + + +

+

(
+ + +

)(3)

+

( )(4)

−

=
(

−
)

+ 2
(

−
)

+
(

. . .
)(3)

+
(

. . .
)(4)

FIG. 11. �Color online� Matrix elements of Heff between identi-
cal initial and final states that are useful for the computation of t0,0

at order 2. Diamonds with solid lines represent the particle position
in the considered state. Contributions arising from an action of
Heff−Q which does not involve the particle site contain a dotted
diamond that keeps trace of this site. Other symbols have the same
meaning as in previous figures. Terms in parenthesis are higher-
order terms, for which the exponent gives the lowest order they start
to contribute. For the last contribution, intermediate steps have not
been shown, and the higher-order terms are not kept until the end,
to keep things as light as possible.

1,0
=

〈 ∣∣∣ Heff

∣∣∣ 〉
=

1,0
=

〈 ∣∣∣ Heff

∣∣∣ 〉
= +

= +

1,0

=

〈 ∣∣∣∣∣ Heff

∣∣∣∣∣
〉

= + + +

( )(3)

= + 2 +

( )(3)

1,1

=

〈 ∣∣∣∣∣ Heff

∣∣∣∣∣
〉

= + +

( )(3)

= 2 +

( )(3)

2,0
=

〈 ∣∣∣ Heff

∣∣∣ 〉
=

FIG. 12. �Color online� Matrix elements of Heff between differ-
ent initial and final states that are useful for the computation of t1,0,
t2,0, and t1,1 at order 2. Conventions are the same as in Fig. 11.

− =

− =
0,0

− =
sbt

0,0

(
−

)(3)

=
0,0

− − sbt

0,0

=
sbt

0,0

(
. . .

)(3)

+
(

. . .
)(4)

=

0,0

−

− sbt

0,0
−

sbt

0,0

=

0,0

− − 2
sbt

0,0

=

sbt

0,0

FIG. 13. �Color online� Inversion of relations shown in Fig. 11.
The exponent sbt �for subtracted� refers to the subcluster
subtraction.
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while we reached order 12 for q=4 �4qp corresponding to
1QP� and q=6 �6qp corresponding to a bound state of 2QP�.
We restrict ourselves to the physical subspace �i.e., the states
corresponding to magnons� where all conserved quantities
�Bp’s� of Sec. II D are set to +1, and postpone the discussion
of unphysical states �having antiferromagnetic bonds not cor-
responding to a magnon configuration of the initial models�
to Sec. VII.

For q=0, we obtain the ground-state energy per bond

e0 = −
1

2
−

1

8
h2 −

1

384
h4 −

1

6144
h6 −

181

3 538 944
h8

−
1 388 129

254 803 968 000
h10 −

67 647 506 447

25 684 239 974 400 000
h12

−
707 258 321 166 713

2 588 971 389 419 520 000 000
h14, �27�

which matches with the result given in Ref. 28.
The first nontrivial physical sector for the TFIM is the

one-magnon sector, which is a peculiar case of q=4, since
the four antiferromagnetic bonds must have a relative posi-
tion similar to the one shown in Fig. 2. We computed the
dispersion �4�kx ,ky� up to order 12. The list of all relevant
hopping amplitudes is given in Appendix A 1. Noting that
�4�kx ,ky� is minimal for �kx ,ky�= �0,0�, one gets the one-
magnon gap

�4 = 4 −
3

2
h2 +

43

96
h4 −

19 993

27 648
h6 +

82 873 487

79 626 240
h8

−
1 901 437 203 257

1 146 617 856 000
h10 +

64 764 934 458 802 909

23 115 815 976 960 000
h12.

�28�

Note that our results also match those given in Refs. 19 and
28 up to some trivial rescaling of the Hamiltonian’s param-
eters.

The next physical sector for the TFIM is a subspace of the
6qp sector which corresponds to the bound states discussed
above and is illustrated in Fig. 3. In this sector, the effective
Hamiltonian describes the hopping of the bound state, whose
center of mass lives on the square lattice formed by the
middles of the bonds �dots in Fig. 4�. However, one must
state that there are two different types of sites in this lattice

�see Fig. 4� since bonds can be vertical or horizontal. This is
obvious in Fig. 3 where the two bound states involve a dif-
ferent pattern of antiferromagnetic bonds. Series expansion
of the hopping amplitudes are given in Appendix A 2 up to
order 12. From these amplitudes it is clear that the bound
state does not have the same probability to hop in a given
direction, for instance, x, if it is on a horizontal or on a
vertical bond. Of course, this important distinction also holds
for the XXZ model discussed in the next section.

Therefore, one is led to diagonalize a 2�2 matrix for
each value of the center-of-mass momentum k= �kx ,ky�. One
can, in particular, extract the gap, which is found to be the
lowest of the two energies at k= �0,0�, and reads

�6
− = 6 −

275

96
h4 −

11 521

27 648
h6 +

16 400 551

7 962 624
h8

+
1 459 322 986 427

143 327 232 000
h10

−
101 780 777 359 633 847

28 894 769 971 200 000
h12. �29�

The energy of the second mode at zero center-of-mass
momentum is higher and given by

�6
+ = 6 −

11

96
h4 −

115

1024
h6 −

4 956 689

39 813 120
h8

−
1 720 028 423

17 915 904 000
h10 −

880 952 915 946 869

9 631 589 990 400 000
h12.

�30�

We do not analyze the associated bound state in detail but
just note that this mode decays into the two-magnon con-
tinuum well before the critical point. Physical implications of
such a decay will be discussed for the XXZ model below.

B. Exact diagonalization

To have some finite-size crosschecks of the validity of the
perturbative expansions and the mapping to the Kitaev-type
Hamiltonians, performing exact-diagonalization �ED� studies
on the microscopic models defined above demands particular
adjustments. First, the appearing interactions are of four-
body type for TFIM in Eq. �10� and of seven-body type for
XXZ in Eq. �11�. Second, the amount of symmetries is enor-
mous, which enables us to go to big systems as up to N
=50 sites. This, however, demands a suitable way to generate
the symmetrically reduced basis, as a loop through all pos-
sible spin configurations would be impracticable. To over-
come the first problem, we apply the Kernel sweeping
method to efficiently implement many-body interaction
terms, where details are elaborated on in Ref. 45. Basically, a
small m-site Hamiltonian of the m-body interaction is de-
fined, and implemented to sweep over the whole lattice basis.
To address the second point, we do not loop over all possible
N-site configurations and subsequently sort out by symmetry
constraints, but start with an allowed state of the basis and
iteratively act on it by the respective Hamilton operator. In
each step, new unprecedented scattering states are collected

=
1,0

2 = 2
(

1,0
−

1,0

)

4 + 2

( )(3)

= 2

⎛
⎝

1,0

−
1,0

⎞
⎠

2 +

( )(3)

=

1,1

=
2,0

FIG. 14. �Color online� Inversion of relations shown in Fig.
12.
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and added to the yet incomplete basis, until a new action of
H does not produce new scattering states anymore. In doing
so, as H commutes with the Z2 symmetries 	see Eqs. �12� and
�14�
, we make sure that the iteration procedure only acts
within the Z2 charge subsector we want to consider. For N
=50, this yields a subblock dimension of 250/2−1

=16 777 216 as alluded to previously, which is already in
suitable range for Lanczos diagonalization algorithms. Still,
from there, we can further exploit lattice symmetries, such as
the translational invariance of the models, to specify the
point of the Brillouin zone we want to study. For the Hamil-
tonians considered, we compute the low-energy spectra for
clusters up to N=50 sites. As shown in Fig. 15, the finite-size
corrections do not allow us to adequately describe the vicin-
ity of the intermediate and large h limit, as the proximity of
the continuum and the bound-state modes becomes compa-
rable to the finite-size splitting scale. Apparently, Fig. 15
explicates that the ED data for the largest available system
size corresponds to the expansion data up to h�0.6. How-
ever, in the regime where the perturbative expansion data
likewise starts to fluctuate a lot depending on the order of the
expansion, the ED data cannot be used for suitable analysis.
In the following, it is thus implicitly assumed that we use
exact diagonalization to crosscheck the implementation of
the perturbative expansions, but can only rely on the latter to
highest order to study the interesting regimes where the
bound-state modes approach the continuum.

C. Analysis and gap ratio at the critical point

As already discussed in Ref. 28, the series expansion for
�4 is strongly diverging so that one has to perform some
resummation to extract gap values for finite h. This also
seems to be the case for �6

−, although we only have coeffi-
cients up to order 12 for this quantity. Unfortunately, stan-

dard Padé-type resummation procedure using the order 20
expansion for �4 given in Ref. 28 leads to a critical point
which is still far from the most accurate value. Indeed, naive
Padé approximants �	10,10
, 	8,12
, 	12,8
� lead to
hc= �1.65045,1.57029,1.73306�, respectively, whereas the
position of the critical point computed from series expansion
in the high-field phase27 is hc=1.5216�6�. Note that for its
classical counterpart which is the critical temperature, higher
precision of order 10−7 has been reached �see, for instance,
Ref. 46 and references therein�.

Here, our aim is to check a result coming from field-
theoretical calculations performed by Caselle et al.16,17 who
predict that �6

− /�4 �h=hc
�1.8. Recently, this prediction has

been improved using numerical diagonalization,47 giving a
ratio of 1.84�3�.

Given that the transition point is defined by �4=0, a finite
ratio at the critical field means that �i� �6

−=0 at this point,
and �ii� �6

− vanishes with the same critical exponent �. It can
therefore be expected that the direct extrapolation of �6

− is at
least as complicated as the one for �4 which is actually the
case. By contrast, one may hope that the ratio �6

− /�4, on
which we focus below, has a better behavior.

The bare series of the ratio �6
− /�4 up to order 12 reads

�6
−

�4
=

3

2
+

9

16
h2 −

517

768
h4 −

32 831

221 184
h6 +

156 729 359

637 009 920
h8

+
27 593 405 457 803

9 172 942 848 000
h10

−
415 396 528 829 457 211

924 632 639 078 400 000
h12, �31�

and is shown in Fig. 15. Clearly, the bare series is still alter-
nating and the convergence is rather poor �h�0.5� so ex-
trapolation schemes are mandatory. First we tried standard
Padé approximants. We found that all approximants 	n ,m

with n+m�10 give no useful result in the sense that the
approximant either has a spurious pole or shows a diverging
behavior well before the critical field hc. Looking at the Padé
approximants with n+m=12 we found only two valid cases,
namely, 	8,4
 and 	6,6
. Still no converging picture emerges
because the 	8,4
 approximant displays a diverging behavior.
However, the approximant 	6,6
 is the first one to behave
smoothly �see Fig. 15�. We conclude that the Padé analysis
gives no convergent picture and it seems that one needs at
least the order 12 series to catch the physics of this ratio
close to the critical point.

To proceed further, we used DlogPadé extrapolation
which is usually more reliable than Padé extrapolations for
positive quantities. Among all approximants with n�4 and
m�4, DlogPadé 	4,6
 is the only one that has no spurious
pole. This extrapolation is shown in Fig. 15. It can be seen
that the ratio seems to behave almost linearly as a function of
the field close to the critical point. The ratio at the critical
field hc is 1.81 which is very close to the numerical value.47

So one finds again that one needs at least order 12 to capture
the expected behavior. Clearly, higher orders are expected to
give more valuable insights in this quantity but these are
beyond the scope of this work.

0 0.5 1 1.5
h

1.5

1.6

1.7

1.8

1.9

∆- 6/∆
4

Pade[6,6]
DlogPade [4,6]
Bare (O12)
Bare (O10)
Bare (O8)
Bare (O6)
ED N=50 Mapped

FIG. 15. �Color online� Thin lines represent the bare ratio
�6

− /�4 for different maximal orders 6, 8, 10, and 12 as a function of
the magnetic field h. Thick lines correspond to different approxima-
tions of this ratio. Filled circles denote ED data of the mapped
model �10� with N=50 sites �bonds of the original lattice�. Dashed
vertical �horizontal� line marks the value of the magnetic field �ra-
tio� at the critical point as obtained from the numerical diagonaliza-
tions of Ref. 47.
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The relevance of higher orders can be also understood
from the fact that fluctuations on rather large length scales
are required to follow this ratio up to the critical point. This
is in agreement with ED results, displayed in Fig. 15, which
are qualitatively similar to the bare PCUTs series.

VI. RESULTS FOR THE XXZ MODEL

A. Series expansion of the low-energy spectrum

Similarly, we computed the low-energy spectrum of the
XXZ model by the PCUTs method. As previously, we restrict
the discussion again to the physical subspaces q� �0,4 ,6

corresponding to the ground state, to one-magnon states and
to two-magnon bound states. We derive the effective Hamil-
tonian up to order 10 in the 0QP sector and up to order 8 in
the 1QP and 2QP sectors.

For q=0, we obtain the ground-state energy per dimer

e0 = −
1

2
−

1

6
�2 +

1

1080
�4 −

3587

2 268 000
�6

−
660 294 389

800 150 400 000
�8

−
156 875 294 970 593 831

503 046 234 915 840 000 000
�10, �32�

which matches with the result given in Ref. 29.
The one-magnon sector corresponds again to the first non-

trivial physical sector with q=4. The four antiferromagnetic
bonds must remain in a closed-pack relative position such
that they share a site in the original square lattice �see Fig. 2�.
The dispersion can be obtained from the list of hopping am-
plitudes given in Appendix B 1. The minimum of the disper-
sion is found at k= �0,0�, and one gets for the one-magnon
gap, in accordance with Ref. 30,

�4 = 4 −
10

3
�2 +

137

216
�4 −

13 039 847

15 552 000
�6

+
124 898 889 761 701

230 443 315 200 000
�8. �33�

We now switch to the q=6 sector that corresponds to the
two-magnon bound state. Its analysis follows exactly the
same steps as for the TFIM discussed in the previous section.
Series expansions of the hopping amplitudes for the bound
state are given in Appendix B 2 up to order 8. One has to
diagonalize a 2�2 matrix for each value of the center-of-
mass momentum k= �kx ,ky�. The gap is found at k= �0,0�,
and reads

�6
− = 6 −

10

3
�2 +

323

540
�4 −

1 435 321

324 000
�6

+
3 809 941 658 983

320 060 160 000
�8. �34�

The other bound mode at higher energy with the same
momentum k= �0,0� has the expansion

�6
+ = 6 +

2

3
�2 −

619

1080
�4 −

482 989

1 036 800
�6

−
15 320 370 383 651

19 203 609 600 000
�8. �35�

We would like to point out that the two different orientations
of the bound state are missed in Ref. 15. As a consequence,
the dispersion for arbitrary momentum of the bound state is
not correct in this reference. Only the gap in this sector
matches with our results �which certainly means that all hop-
ping amplitudes in Ref. 15 are correct�.

B. Fate of the bound states

An interesting question is to determine when the two-
magnon bound states decay as a function of �. To this end,
we first focus on the case of total momentum k= �0,0�, de-
scribing low-energy physics. Bound states decay for this mo-
mentum at latest at the Heisenberg point �=1, where the
one-magnon gap closes and therefore all multimagnon con-
tinua have a gapless spectrum.

The lowest energy of the two-magnon continuum is found
at total momentum k= �0,0� and is given by twice the one-
magnon gap �4. Bound states start to acquire a finite lifetime
once their energy is degenerate with the lower band edge of
the two-magnon continuum. Consequently, we determine the
values of � for which ratios 2�4 /�6

� are equal to one. In the
following, we restrict the discussion to the PCUTs results
since reliable ED results would require enormous system
sizes �with 36 sites one would only capture terms of order
�2�. The bound state is indeed an extended object and the �
term in the XXZ Hamiltonian �6� involves nearest-neighbor
interactions, contrary to the purely local h term in the TFIM
Hamiltonian �1�.

Obviously, the high-energy mode �6
+ decays first. Using

different extrapolation schemes such as Padé and DlogPadé,
we find that it disappears for ��0.5401�1�, i.e., for a rather
small value which explains the high accuracy. Beyond this
point, the bound state gains a finite lifetime and, strictly
speaking, a perturbative derivation of a block-diagonal
Hamiltonian becomes impossible.48 One can expect that the
decayed bound state shows up as resonances inside the con-
tinua of dynamical correlation functions. The two-magnon
peak observed in the theoretical Raman response at the
Heisenberg point �=1 �Refs. 49 and 50� and experimentally
detected in the undoped cuprate compounds51,52 might be a
remnant of this bound state. However, a correct physical de-
scription of the decay process is beyond any series expansion
study. This scenario is further confirmed by the fact that any
Padé extrapolation of the energy �6

+ has poles in the denomi-
nator.

Concerning the low-energy properties, in analogy to the
Ising case studied in the previous section, the fate of the
low-energy mode �6

− is more interesting but also more chal-
lenging. The bare ratio 2�4 /�6

− together with different ap-
proximants are shown in Fig. 16. We observe that no pole
shows up in these approximants. Consistently, all approxima-
tions indicate that the decay takes place very close to the
Heisenberg point ���0.97�. Taking into account that the se-
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ries have been obtained up to order 8 only and have only
even orders, one cannot tell precisely whether the merging
point is located exactly at the critical point ��=1�, just as in
the TFIM, or not. One argument in favor of the former sce-
nario is that, for any finite-size system, the ground state of
the SU�2�-invariant Heisenberg point is a singlet and the
gapped elementary excitation is a threefold-degenerate trip-
let, with total magnetization Sz� �−1,0 ,+1
. The excitations
with Sz� �−1,+1
 can be identified with one-magnon excita-
tions found for �	1, whereas the excitation with Sz=0 has
to be a two-magnon bound state. The gap of these excitations
should furthermore vanish in the thermodynamical limit con-
sidered in the present PCUTs study.

VII. TORIC CODE MODEL IN A TRANSVERSE
FIELD WITH Jp=0

As mentioned in Sec. II D, the toric code Hamiltonian
�10� deserves to be analyzed on its own. Indeed, in the origi-
nal toric code model,25 Kitaev focused on the isotropic cou-
pling Js=Jp 	see Eq. �13� for notations
. Here, the bond de-
scription of the TFIM leads us to consider a different
situation where �i� Jp=0 and �ii� a magnetic field in the z
direction is introduced. Let us stress that such a model is
very close to the Xu-Moore model53 and, in some sense, very
similar to the parallel-field problem discussed in Refs. 26
and 32–34. Most importantly, it is exactly the model intro-
duced by Wegner in his seminal paper54 �see also Ref. 33�
but, here, Bp operators are conserved quantities that can be in
any configuration. This crucial difference raises several ques-
tions that we shall address in the present section.

Let us first rewrite the Hamiltonian and various operators
of Sec. II D in the toric code language. The Hamiltonian
reads

H = − J�
s

As − h�
i

�i
z, �36�

where the spins live on the bonds of a square lattice �see Fig.
17� and the As=�i�s�i

x operators involve the four sites

around a vertex s. The plaquette operators Bp=�i�p�i
z are

conserved. For a system defined with periodic boundary con-
ditions the cycle operators �i�C�i

z defined on diagonal or
antidiagonal contours, such as those shown in Fig. 17, are
conserved as well.

The main difference with the Xu-Moore Hamiltonian53 is
that As operators only act on vertices of the square lattice and
not on plaquettes. Furthermore, in the Xu-Moore model, the
cycle operators are still conserved, contrary to the Bp opera-
tors. The dynamics of the quasiparticles is thus expected to
be more constrained than in the Xu-Moore model which al-
ready exhibits dimensional reduction.

In the following, we shall discuss separately the two lim-
its �large and small J /h� for which we computed perturba-
tively the low-energy spectrum. One can already note that in
the small-field limit, the system is in a topological phase
�i.e., the ground-state degeneracy depends on the surface ge-
nus� whereas at large field the ground state is obviously
unique. Thus, one expects a �topological� quantum phase
transition when varying the ratio J /h.

A. Large-field limit hšJ

For J=0, elementary excitations are usual magnons ob-
tained by flipping any spins from the ground state which is
the state fully polarized in the field �z� direction. PCUTs
formalism will then give a dressed magnon description when
switching on J.26 Setting h=1 /2, the ground-state energy per
bond �which coincides with the 0qp level� is obtained from
Eq. �27� by replacing h by J.

However, for this model, arbitrary qp sectors are allowed
although conservation of Bp’s imposes severe constraints on
the spectrum. For q=1, one only has a nondispersive �ex-
cited� level at energy

�1 = 1 −
J2

2
+

3J4

32
−

31J6

768
+

299 233J8

15 925 248
−

2 014 178 639J10

764 411 904 000
,

�37�

since any displacement of this localized dressed magnon
would modify the Bp’s configuration.

0 0.2 0.4 0.6 0.8 1
λ

1

1.1

1.2

1.3

2∆
4/∆

- 6

Pade[4,4]
DlogPade [2,4]
DlogPade [4,2]
Bare (O8)

0.96 0.98 1
λ

0.98

1

1.02

2∆
4/∆

- 6

FIG. 16. �Color online� Thin blue line represents the bare ratio
2�4 /�6

− for the maximal order 8 as a function of the anisotropy
parameter �. Thick lines correspond to different approximations of
this ratio. The dashed horizontal line marks the value 1 of the ratio.
The value �=1 corresponds to the Heisenberg point.

FIG. 17. �Color online� Square lattice on which the toric code
Hamiltonian �36� is defined with periodic boundary conditions.
Sites are represented with dots. We also show a vertex s, a plaquette
p, a diagonal contour C1, and an antidiagonal contour C2, used to
define various operators �see text�.
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For q=2, the only possible dynamics is provided by some
flip-flop processes depicted in Fig. 18 �we do not consider
the case where the two dressed magnons are far apart�. Both
configurations shown in Fig. 18 yield the same gap, which
reads

�2 = 2 − J −
J2

4
+

J3

8
−

13J4

192
+

29J5

768
−

445J6

13 824
+

739J7

36 864

−
608 839J8

79 626 240
−

2 462 069J9

9 555 148 800
+

21 097 903J10

152 882 380 800
.

�38�

Note that in the Xu-Moore model, the pair of nearest-
neighbor magnons �top of Fig. 18� is allowed to hop at any
distance �but in a one-dimensional stripe�.14

We have not computed energies of states with more mag-
nons. Let us simply mention the following two points. For
q=3, the problem is similar to q=2 and no dynamics of the
QPs is allowed apart from flip-flop processes. The first dis-
persive mode is the one involving four magnons, just as in
the Xu-Moore model.14

B. Small-field limit h™J

Let us now turn to the opposite limit where J is much
larger than h and for which the system is in a topological
phase. For convenience, let us set J=1 /2. Since the Bp op-
erators do not appear in the Hamiltonian, all states are mac-
roscopically degenerate when h=0. It is thus natural to won-
der what the effect of the perturbation is. A calculation at
fourth order of the effective Hamiltonian in the sector where
there is no effective vertex excitation �still using the PCUTs
formalism� yields

Heff = − N�1

4
+

hz
2

2
+

5hz
4

8
� −

5hz
4

2 �
p

Bp, �39�

where N is the number of sites �and thus twice the number of
plaquettes or of vertices�. We thus see that, once the mag-
netic field is switched on, the ground state belongs to the

sector where each operator Bp has eigenvalue +1. As a
check, note that setting all Bp operators to one in the above
formula gives the ground-state energy, which matches with
Eq. �8� of Ref. 26 �apart from a trivial constant shift since no
Bp operator appears in our Hamiltonian, and after setting hx
to zero in this equation�. The fact that the sector with no
plaquette excitation is selected by the perturbation is consis-
tent with an Ising-type quantum phase transition. Indeed, in
this sector, the model with Hamiltonian �36� is dual to the
two-dimensional transverse-field Ising model �which follows
from the same arguments as those used in Ref. 32�.

VIII. CONCLUSIONS

We have studied two-magnon bound states in the TFIM
and XXZ models using PCUTs around the Ising limit. This
method gives a nice physical picture of these excitations in
terms of dressed magnons which can be of two kinds on a
square lattice depending on the “frustrated bond” localizing
it �horizontal or vertical�. Consequently, one obtains two dif-
ferent bound modes contrary to previous claims.15,55 For both
systems, we find that the lowest-energy gap vanishes at the
critical point, or at least in a neighborhood that cannot be
distinguished from this point with actual series expansions.
Solving this issue, especially for the XXZ model, would
clearly require much higher orders or a nonperturbative treat-
ment as the one considered in Refs. 16 and 17 for the TFIM.

From a methodological point of view, we have adapted
Entings’ finite-lattice method commonly used in statistical
mechanics to quantum problems. This approach basically
consists in a cluster embedding which considerably increases
the efficiency �from the time and memory point of view� of
the PCUTs method we used here. Note that for the XXZ
model, such an improvement allowed us to reach the same
maximum order as standard series expansions techniques
�see Refs. 15 and 19� based on a more sophisticated graph
analysis. Clearly, adapting such a graph description to
PCUTs is a crucial issue which is currently under study and
should allow one to reach higher orders.
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APPENDIX A: LOW-ENERGY SPECTRUM OF THE TFIM

1. One-magnon hopping amplitudes

One-magnon excitations are located on sites of the square
lattice. The corresponding hopping amplitudes ti,j of i sites in
x direction and j sites in y direction are given below. Hop-
ping amplitudes that are not given can be deduced from the
symmetries of the lattice and the hermiticity of the Hamil-
tonian,

FIG. 18. �Color online� Illustration of the two-magnon dynamics
in the high-field limit of Hamiltonian �36�. Dressed magnons are
depicted as crosses. The + and − signs refer to the eigenvalue +1 or
−1 of the plaquette operators Bp.
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t0,0 = 4 −
1

2
h2 +

19

96
h4 −

4745

27 648
h6 +

15 167 827

79 626 240
h8

−
274 582 941 007

1 146 617 856 000
h10

+
39 052 830 905 417 587

115 579 079 884 800 000
h12,

t1,0 = −
1

4
h2 +

1

16
h4 −

785

9216
h6 +

49 355

442 368
h8

−
1 325 086 777

8 493 465 600
h10 +

503 970 370 332 103

2 140 353 331 200 000
h12,

t1,1 = −
29

768
h6 +

82 181

1 327 104
h8 −

94 291 093

955 514 880
h10

+
620 486 307 800 173

3 852 635 996 160 000
h12,

t2,0 = −
7

768
h6 +

25 789

1 327 104
h8 −

15 624 304 847

382 205 952 000
h10

+
1 492 786 454 328 649

19 263 179 980 800 000
h12,

t2,1 = −
23

9216
h6 +

11 441

1 327 104
h8 −

17 711 235 911

764 411 904 000
h10

+
273 663 316 786 417

5 503 765 708 800 000
h12,

t3,0 = −
23

27 648
h6 +

1529

995 328
h8 −

5 258 321 581

1 146 617 856 000
h10

+
202 725 363 389 893

16 511 297 126 400 000
h12,

t2,2 =
307

884 736
h8 −

442 674 073

127 401 984 000
h10

+
31 180 724 115 977

2 568 423 997 440 000
h12,

t3,1 =
307

1 327 104
h8 −

258 078 503

127 401 984 000
h10

+
268 024 184 026 579

38 526 359 961 600 000
h12,

t4,0 =
307

5 308 416
h8 −

24 494 311

84 934 656 000
h10

+
11 181 306 857 333

11 007 531 417 600 000
h12,

t3,2 = −
1 621 657

12 740 198 400
h10 +

359 038 393

339 738 624 000
h12,

t4,1 = −
1 621 657

25 480 396 800
h10 +

54 196 069 259

122 305 904 640 000
h12,

t5,0 = −
1 621 657

127 401 984 000
h10 +

11 111 462 099

203 843 174 400 000
h12,

t3,3 =
63 560 779

1 834 588 569 600
h12,

t4,2 =
63 560 779

2 446 118 092 800
h12,

t5,1 =
63 560 779

6 115 295 232 000
h12,

t6,0 =
63 560 779

36 691 771 392 000
h12.

2. Two-magnon bound state hopping amplitudes

The two-magnon bound states are located at the centers of
the bonds on the square lattice and exist in two kinds: the
bound state can indeed live on a horizontal or a vertical link
denoted h and v, respectively. The hopping amplitudes of a
horizontally oriented bound state ti,j

h,
 are listed below. The
corresponding hopping elements for the vertically oriented
bound state can be deduced by reversing the x and y compo-
nents, i.e., ti,j

v,
= tj,i
h,
. Again, the symmetries of the lattice and

the hermiticity of the Hamiltonian have been used to restrict
the number of given amplitudes,

t0,0
h,h = 6 −

5

8
h4 −

8573

27 648
h6 +

28 100 449

79 626 240
h8

+
34 908 351 643

23 887 872 000
h10 +

8 582 632 522 763 479

23 115 815 976 960 000
h12,

t0,1
h,h = −

1

3
h4 −

1

12
h6 +

8209

41 472
h8 +

4 323 615 563

4 777 574 400
h10

+
844 706 924 968 673

8 255 648 563 200 000
h12,

t1/2,1/2
h,v = −

1

3
h4 −

59

768
h6 +

1 052 251

4 976 640
h8

+
266 099 856 239

286 654 464 000
h10

+
7 513 297 407 630 751

115 579 079 884 800 000
h12,
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t1,0
h,h = −

1

12
h4 +

7

192
h6 +

102 731

2 211 840
h8 +

5 273 001 593

15 925 248 000
h10

−
818 755 629 011 689

3 210 529 996 800 000
h12,

t0,2
h,h =

1

864
h6 +

207 833

3 981 312
h8 +

41 166 508 631

286 654 464 000
h10

−
687 140 651 194 889

8 255 648 563 200 000
h12,

t1/2,3/2
h,v = −

1

192
h4 +

7

384
h6 +

94 081

2 654 208
h8 +

118 209 917

707 788 800
h10

−
993 567 226 390 117

6 421 059 993 600 000
h12,

t1,1
h,h = −

1

192
h4 +

43

1536
h6 +

5731

294 912
h8 +

556 424 309

3 185 049 600
h10

−
189 675 771 174 199

917 294 284 800 000
h12,

t3/2,1/2
h,v = −

1

192
h4 +

7

384
h6 +

94 081

2 654 208
h8 +

118 209 917

707 788 800
h10

−
993 567 226 390 117

6 421 059 993 600 000
h12,

t2,0
h,h = −

1

192
h4 +

13

1536
h6 −

199

18 432
h8 +

20 876 171

1 061 683 200
h10

−
2 349 250 291 300 307

23 115 815 976 960 000
h12,

t0,3
h,h = −

271

1 769 472
h8 +

23 677

19 660 800
h10

−
471 248 557 368 467

16 511 297 126 400 000
h12,

t1/2,5/2
h,v =

1

1728
h6 −

22 393

10 616 832
h8 +

12 078 781 789

2 293 235 712 000
h10

−
235 040 908 701 859

5 503 765 708 800 000
h12,

t1,2
h,h =

1

1728
h6 −

15 085

5 308 416
h8 +

1 160 612 737

229 323 571 200
h10

−
625 401 171 948 659

8 255 648 563 200 000
h12,

t3/2,3/2
h,v =

1

864
h6 −

5939

1 327 104
h8 +

1 534 754 177

191 102 976 000
h10

−
470 006 557 776 271

5 778 953 994 240 000
h12,

t2,1
h,h =

1

864
h6 −

5939

1 327 104
h8 +

77 266 223

7 644 119 040
h10

−
23 741 703 266 443

412 782 428 160 000
h12,

t5/2,1/2
h,v =

1

1728
h6 −

22 393

10 616 832
h8 +

12 078 781 789

2 293 235 712 000
h10

−
235 040 908 701 859

5 503 765 708 800 000
h12,

t3,0
h,h =

1

1728
h6 −

203

147 456
h8 +

872 395 631

286 654 464 000
h10

−
95 952 207 356 309

11 557 907 988 480 000
h12,

t0,4
h,h =

7579

331 776 000
h10 −

1 916 092 087

7 644 119 040 000
h12,

t1/2,7/2
h,v = −

271

3 538 944
h8 +

4 822 213

10 616 832 000
h10

−
143 095 110 961

73 383 542 784 000
h12,

t1,3
h,h = −

271

3 538 944
h8 +

3 438 923

5 308 416 000
h10

−
3 441 481 980 911

917 294 284 800 000
h12,

t3/2,5/2
h,v = −

271

1 179 648
h8 +

29 122 303

21 233 664 000
h10

−
7 447 108 569 091

1 223 059 046 400 000
h12,

t2,2
h,h = −

271

1 179 648
h8 +

32 991 041

21 233 664 000
h10

−
12 599 471 323

1 791 590 400 000
h12,

t5/2,3/2
h,v = −

271

1 179 648
h8 +

29 122 303

21 233 664 000
h10

−
7 447 108 569 091

1 223 059 046 400 000
h12,
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t3,1
h,h = −

271

1 179 648
h8 +

1 683 571

1 415 577 600
h10

−
605 405 462 489

135 895 449 600 000
h12,

t7/2,1/2
h,v = −

271

3 538 944
h8 +

4 822 213

10 616 832 000
h10

−
143 095 110 961

73 383 542 784 000
h12,

t4,0
h,h = −

271

3 538 944
h8 +

138 329

530 841 600
h10

−
2 796 720 985 871

3 669 177 139 200 000
h12,

t0,5
h,h = −

168 493 133

45 864 714 240 000
h12,

t1/2,9/2
h,v =

7579

663 552 000
h10 −

85 039 213 657

917 294 284 800 000
h12,

t1,4
h,h =

7579

663 552 000
h10 −

12 339 018 187

91 729 428 480 000
h12,

t3/2,7/2
h,v =

7579

165 888 000
h10 −

1 225 804 705 393

3 210 529 996 800 000
h12,

t2,3
h,h =

7579

165 888 000
h10 −

1 476 569 703 919

3 210 529 996 800 000
h12,

t5/2,5/2
h,v =

7579

110 592 000
h10 −

622 709 811 499

1 070 176 665 600 000
h12,

t3,2
h,h =

7579

110 592 000
h10 −

622 709 811 499

1 070 176 665 600 000
h12,

t7/2,3/2
h,v =

7579

165 888 000
h10 −

1 225 804 705 393

3 210 529 996 800 000
h12,

t4,1
h,h =

7579

165 888 000
h10 −

975 039 706 867

3 210 529 996 800 000
h12,

t9/2,1/2
h,v =

7579

663 552 000
h10 −

85 039 213 657

917 294 284 800 000
h12,

t5,0
h,h =

7579

663 552 000
h10 −

11 672 061 361

229 323 571 200 000
h12,

t0,6
h,h = 0,

t1/2,11/2
h,v = −

168 493 133

91 729 428 480 000
h12,

t1,5
h,h = −

168 493 133

91 729 428 480 000
h12,

t3/2,9/2
h,v = −

168 493 133

18 345 885 696 000
h12,

t2,4
h,h = −

168 493 133

18 345 885 696 000
h12,

t5/2,7/2
h,v = −

168 493 133

9 172 942 848 000
h12,

t3,3
h,h = −

168 493 133

9 172 942 848 000
h12,

t7/2,5/2
h,v = −

168 493 133

9 172 942 848 000
h12,

t4,2
h,h = −

168 493 133

9 172 942 848 000
h12,

t9/2,3/2
h,v = −

168 493 133

18 345 885 696 000
h12,

t5,1
h,h = −

168 493 133

18 345 885 696 000
h12,

t11/2,1/2
h,v = −

168 493 133

91 729 428 480 000
h12,

t6,0
h,h = −

168 493 133

91 729 428 480 000
h12. �A1�

APPENDIX B: LOW-ENERGY SPECTRUM
OF THE XXZ

Notations are the same as in Appendix A.

1. One-magnon hopping amplitudes

t0,0 = 4 −
1

3
�2 +

287

864
�4 −

910 529

6 220 800
�6

+
5 792 068 288 969

57 610 828 800 000
�8,

t1,1 = −
1

2
�2 +

11

72
�4 −

2 106 349

31 104 000
�6

+
19 716 698 831 861

307 257 753 600 000
�8,

t2,0 = −
1

4
�2 +

1

72
�4 −

752 221

20 736 000
�6

+
19 657 769 838 433

614 515 507 200 000
�8,
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t2,2 = −
7

192
�4 −

279 853

31 104 000
�6 +

1 163 045 360 221

153 628 876 800 000
�8,

t4,0 = −
7

1152
�4 −

578 213

62 208 000
�6 +

14 632 795 561

5 486 745 600 000
�8,

t3,3 = −
251

27 648
�6 +

2 563 786 289

10 241 925 120 000
�8,

t4,2 = −
251

36 864
�6 −

17 610 038 713

20 483 850 240 000
�8,

t5,1 = −
251

92 160
�6 −

39 527 719 681

20 483 850 240 000
�8,

t6,0 = −
251

552 960
�6 −

3 452 274 997

2 926 264 320 000
�8,

t4,4 = −
327 349

159 252 480
�8,

t5,3 = −
327 349

199 065 600
�8,

t6,2 = −
327 349

398 131 200
�8,

t7,1 = −
327 349

1 393 459 200
�8,

t8,0 = −
327 349

11 147 673 600
�8.

2. Two-magnon bound state hopping amplitudes

t0,0
h,h = 6 −

1

2
�2 −

229

2880
�4 −

10 916 263

12 441 600
�6

+
77 090 072 016 313

76 814 438 400 000
�8,

t0,1
h,h = −

1

3
�2 +

67

216
�4 −

4 985 783

24 883 200
�6

+
231 067 152 851 203

263 363 788 800 000
�8,

t1/2,1/2
h,v = −

1

3
�2 +

89

432
�4 −

943 667

2 764 800
�6

+
223 581 725 823 587

263 363 788 800 000
�8,

t1,0
h,h =

1

6
�2 +

11

288
�4 −

584 821

6 220 800
�6 +

10 646 999 914 133

26 336 378 880 000
�8,

t0,2
h,h = −

257

1728
�4 −

123 863

921 600
�6 +

14 069 731 116 209

184 354 652 160 000
�8,

t1/2,3/2
h,v = −

1

12
�2 −

29

864
�4 −

2 229 119

49 766 400
�6

+
4 078 695 604 273

15 049 359 360 000
�8,

t1,1
h,h = −

1

12
�2 −

41

576
�4 −

335 161

2 488 320
�6

+
3 645 776 906 291

17 557 585 920 000
�8,

t3/2,1/2
h,v = −

1

12
�2 −

29

864
�4 −

2 229 119

49 766 400
�6

+
4 078 695 604 273

15 049 359 360 000
�8,

t2,0
h,h = −

1

12
�2 −

11

432
�4 −

857 713

12 441 600
�6

+
688 142 204 467

9 405 849 600 000
�8,

t0,3
h,h = −

1

1728
�4 +

970 931

62 208 000
�6 +

23 063 997 226 177

921 773 260 800 000
�8,

t1/2,5/2
h,v =

1

432
�4 −

244 283

41 472 000
�6 +

30 735 370 205 093

921 773 260 800 000
�8,

t1,2
h,h =

7

1728
�4 −

12 331

15 552 000
�6 +

207 639 631 734 467

1 843 546 521 600 000
�8,

t3/2,3/2
h,v =

1

192
�4 −

270 403

4 976 640
�6 +

26 215 520 575 403

307 257 753 600 000
�8,

t2,1
h,h =

1

192
�4 −

428 399

24 883 200
�6 +

14 013 035 309 131

184 354 652 160 000
�8,

t5/2,1/2
h,v =

1

432
�4 −

244 283

41 472 000
�6 +

30 735 370 205 093

921 773 260 800 000
�8,

t3,0
h,h =

1

1728
�4 −

7861

6 220 800
�6 +

282 505 209 937

46 088 663 040 000
�8,

t0,4
h,h = −

7277

12 441 600
�6 +

28 585 558 937

307 257 753 600 000
�8,

t1/2,7/2
h,v = −

1

3456
�4 +

298 777

248 832 000
�6

+
1 744 637 644 499

245 806 202 880 000
�8,
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t1,3
h,h = −

1

3456
�4 +

77

124 416
�6 −

4 258 929 380 371

921 773 260 800 000
�8,

t3/2,5/2
h,v = −

1

1152
�4 +

406 687

248 832 000
�6

+
1 166 929 622 801

73 741 860 864 000
�8,

t2,2
h,h = −

1

1152
�4 +

9367

2 488 320
�6 +

31 971 087 871

7 681 443 840 000
�8,

t5/2,3/2
h,v = −

1

1152
�4 +

406 687

248 832 000
�6

+
1 166 929 622 801

73 741 860 864 000
�8,

t3,1
h,h = −

1

1152
�4 +

14 579

6 912 000
�6 +

18 122 969 387 783

1 843 546 521 600 000
�8,

t7/2,1/2
h,v = −

1

3456
�4 +

298 777

248 832 000
�6

+
1 744 637 644 499

245 806 202 880 000
�8,

t4,0
h,h = −

1

3456
�4 −

15 667

31 104 000
�6 +

1 013 784 889 699

307 257 753 600 000
�8,

t0,5
h,h = −

217

12 441 600
�6 −

12 986 330 681

92 177 326 080 000
�8,

t1/2,9/2
h,v = −

991

6 220 800
�6 −

1 247 791 850 591

1 843 546 521 600 000
�8,

t1,4
h,h = −

4181

12 441 600
�6 −

2 538 082 499 891

921 773 260 800 000
�8,

t3/2,7/2
h,v = −

120 691

124 416 000
�6 −

99 157 135 381

3 687 093 043 200 000
�8,

t2,3
h,h = −

20 177

15 552 000
�6 −

26 346 818 453

34 139 750 400 000
�8,

t5/2,5/2
h,v = −

25 489

15 552 000
�6 +

1 118 638 298 843

921 773 260 800 000
�8,

t3,2
h,h = −

25 489

15 552 000
�6 +

415 281 490 573

153 628 876 800 000
�8,

t7/2,3/2
h,v = −

120 691

124 416 000
�6 −

99 157 135 381

3 687 093 043 200 000
�8,

t4,1
h,h = −

39 983

62 208 000
�6 +

690 474 135 503

921 773 260 800 000
�8,

t9/2,1/2
h,v = −

991

6 220 800
�6 −

1 247 791 850 591

1 843 546 521 600 000
�8,

t5,0
h,h =

217

12 441 600
�6 −

17 201 780 639

184 354 652 160 000
�8,

t0,6
h,h =

11 448 487

1 755 758 592 000
�8,

t1/2,11/2
h,v = −

217

24 883 200
�6 −

32 024 937 673

737 418 608 640 000
�8,

t1,5
h,h = −

217

24 883 200
�6 −

12 649 730 881

368 709 304 320 000
�8,

t3/2,9/2
h,v = −

217

4 976 640
�6 −

158 928 910 813

737 418 608 640 000
�8,

t2,4
h,h = −

217

4 976 640
�6 −

10 506 217 709

92 177 326 080 000
�8,

t5/2,7/2
h,v = −

217

2 488 320
�6 −

154 367 383 127

368 709 304 320 000
�8,

t3,3
h,h = −

217

2 488 320
�6 −

7 497 652 279

20 483 850 240 000
�8,

t7/2,5/2
h,v = −

217

2 488 320
�6 −

154 367 383 127

368 709 304 320 000
�8,

t4,2
h,h = −

217

2 488 320
�6 −

104 001 673 121

184 354 652 160 000
�8,

t9/2,3/2
h,v = −

217

4 976 640
�6 −

158 928 910 813

737 418 608 640 000
�8,

t5,1
h,h = −

217

4 976 640
�6 −

101 559 204 737

368 709 304 320 000
�8,

t11/2,1/2
h,v = −

217

24 883 200
�6 −

32 024 937 673

737 418 608 640 000
�8,

t6,0
h,h = −

217

24 883 200
�6 −

5 743 189

1 280 240 640 000
�8,

t0,7
h,h = −

421

5 573 836 800
�8,

t1/2,13/2
h,v =

2 696 353

1 755 758 592 000
�8,
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t1,6
h,h =

5 260 091

1 755 758 592 000
�8,

t3/2,11/2
h,v =

15 978 763

548 674 560 000
�8,

t2,5
h,h =

103 416 781

2 926 264 320 000
�8,

t5/2,9/2
h,v =

896 000 347

8 778 792 960 000
�8,

t3,4
h,h =

965 398 397

8 778 792 960 000
�8,

t7/2,7/2
h,v =

1 308 306 883

8 778 792 960 000
�8,

t4,3
h,h =

1 308 306 883

8 778 792 960 000
�8,

t9/2,5/2
h,v =

896 000 347

8 778 792 960 000
�8,

t5,2
h,h =

275 534 099

2 926 264 320 000
�8,

t11/2,3/2
h,v =

15 978 763

548 674 560 000
�8,

t6,1
h,h =

201 070 073

8 778 792 960 000
�8,

t13/2,1/2
h,v =

2 696 353

1 755 758 592 000
�8,

t7,0
h,h =

421

5 573 836 800
�8,

t0,8
h,h = 0,

t1/2,15/2
h,v = −

421

11 147 673 600
�8,

t1,7
h,h = −

421

11 147 673 600
�8,

t3/2,13/2
h,v = −

421

1 592 524 800
�8,

t2,6
h,h = −

421

1 592 524 800
�8,

t5/2,11/2
h,v = −

421

530 841 600
�8,

t3,5
h,h = −

421

530 841 600
�8,

t7/2,9/2
h,v = −

421

318 504 960
�8,

t4,4
h,h = −

421

318 504 960
�8,

t9/2,7/2
h,v = −

421

318 504 960
�8,

t5,3
h,h = −

421

318 504 960
�8,

t11/2,5/2
h,v = −

421

530 841 600
�8,

t6,2
h,h = −

421

530 841 600
�8,

t13/2,3/2
h,v = −

421

1 592 524 800
�8,

t7,1
h,h = −

421

1 592 524 800
�8,

t15/2,1/2
h,v = −

421

11 147 673 600
�8,

t8,0
h,h = −

421

11 147 673 600
�8.
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